
Six Impossible Things Before Breakfast
Fiona Charles
© Fiona Charles 2011

Originally published in Tea-time with Testers, June, 2011.

Alice laughed. “There’s no use trying,” she said: “one CAN’T believe
impossible things.”

“I daresay you haven’t had much practice,” said the Queen. “When I was your
age, I always did it for half-an-hour a day. Why, sometimes I’ve believed as
many as six impossible things before breakfast...”1

“Aha!” I thought, “Then you must have worked on software projects!”

Waiting for a bus a couple of years ago, I began listing software project lies. The
exercise kept me nicely occupied until the bus arrived and through most of the ensuing
ride. I ended up with an astonishing thirty categories of lies.

In case you think that sounds like an improbable number, I’ll begin by outlining the
parameters I set. First and foremost, I had personally to have heard the lie told one or
more times. Each lie or category of lies had to be material to a software project, though it
could have been told to make a sale before a project began or to describe a project after
its end. Each lie had to be relatively common in the industry—or at least not rare. A lie
had also to be significant to a project: to have influenced perceptions and/or decisions.
And finally, I excluded malicious lies intended to subvert or sabotage an individual on a
project, though I have both heard and (on one unhappy project) been the object of some
of these kinds of lies.

Reviewing the list as I prepared to write this article, I immediately added a couple more.

The (depressing) reality is that in a career spanning three decades, I cannot recall a
single project where there was not at least one significant and material lie. I thought I
remembered consulting on one very nice-minded and squeaky-clean project, but then I
recalled the programme manager telling a PM, “We’re pushing the date of your project
out, but it’s vital that you do not tell your teams. Everyone needs to believe in the original
date so they don’t slack off.”

Does the number of lies on my list horrify you? Am I exaggerating? Or could it be that we
have all heard so many lies so often on software projects that we’ve become
desensitized? I mentioned the “don’t tell the team” lie to a notably honest programmer
friend, and he said, “Well... we hear that one so often it almost doesn’t qualify as a lie.”

“Right”, I said. “And how is it different from those other oldies but goodies:

 ‘We’re running 3 weeks behind, but it won’t impact the end date.’
and

© Fiona Charles 2011 Six Impossible Things Before Breakfast

 ‘We just need to work a couple of weekends to sort out all the quality problems.’”

(A project manager I once worked with used to say, “Show me where on your project
plan it says ‘A miracle happens here’!”)

Perhaps you’ll say team lies like this aren’t deliberate lies—that the techies or the testers
are just being over-optimistic, persuading themselves that the commitments they’re
making aren’t patently impossible. We’ve all done it, haven’t we? And yes, we probably
have. But self-deception is still deception. A lie to one’s self is no less a lie.

How far really are all those “we’re going to make it” team lies from the infamous bait-and-
switch scam some consulting firms routinely practice, or the deliberate underbids put
forward to make a sale? (“We’ll more than make it up in change requests,” the sales
people say.)

Lying of various kinds is quite common on software projects. Past the sale, the lies often
continue with management arbitrarily slashing estimates and imposing upfront
commitments to deliver fixed scope with fixed staffing within unachievable timeframes
and budgets.

On projects that start out with fraudulent commitments, lies are propagated in the hotbed
of fear. Managers demand certainty from people who are often barely in a position to
give better than rough estimates, plus or minus fifty percent. Programmers and testers
make desperate commitments they know they can’t really achieve, and then, week after
week, over-optimistically report their progress and status (lie). People lie—or avoid
telling the truth, which is pretty much the same thing—to deflect blame and to get
management off their backs, hoping to put off well-founded suspicions that they aren’t
going to deliver the impossible, and anxious to get on with productive work.

How many so-called “troubled” or “failed” projects would actually have gone much over
time and over budget if they hadn’t started out committed to fiction?

We may think lies like these are symptomatic of big waterfall projects, and indeed that is
often true. But Agile projects are not immune to deception. A quick scan of the Agile
blogosphere reveals plenty of discussion about impossible project or sprint commitments
made by stakeholders outside the project teams or even by the teams themselves.

The rapid feedback built into an Agile process leaves much less room for practitioners to
hide impossible estimates or falsify status. But teams calling themselves Agile have
been known to play games with the concept of “done”, redefining it to meet the actual
state of the work when they haven’t achieved their goals. Human nature is what it is, on
Agile or waterfall projects.

It’s a healthy sign, therefore, that two recent books by well-known and respected authors
robustly address the topic of dishonesty on software projects and by software
practitioners.

The Dark Side of Software Engineering: Evil on Computing Projects,2 by Johann Rost
and Robert L. Glass, is a survey of the bad things people do on software projects, plus
some other software-related evils like hacking and computer scams. The range of
subjects means the book is a bit of a hodgepodge, but it’s a fascinating read. There’s

 Page 2 of 4

© Fiona Charles 2011 Six Impossible Things Before Breakfast

some numerical analysis I found less than compelling, mainly because the samples are
too small for the numbers to have real statistical significance. This doesn’t detract from
the book overall, which has lots of good stories, qualitative analysis and suggested
remedies from which we can learn important lessons. Among other benefits, you can
learn to spot patterns of certain kinds of nefarious behaviour you may not previously
have noticed on projects.

A nice counterpart to Dark Side is The Clean Coder: A Code of Conduct for Professional
Programmers,3 by Robert C. Martin (Uncle Bob, as he’s known in the Agile world.) I
doubt anyone will be surprised to hear that Bob Martin comes out strongly against lying
on software projects. You may be surprised at how he defines lying, including that it’s a
lie to say you’ll try to meet a date when you already know you cannot achieve it. That
advice alone is worth the price of the book. Martin also emphasizes the importance of
learning to say “no”—an essential skill for people who want to tell the truth (one that
Jerry Weinberg has been promoting and teaching for a long time).

Dark Side and Clean Coder are important for software practitioners of all specialities,
including testers. The subject of professional ethics is vital for us all. We need to learn to
recognize and stamp out lies and other ethical lapses on our projects—not just in other
people, but in ourselves. These books will help. It’s a bonus that they are also good
reads: engagingly written and full of good stories we can relate to.

I don’t know whether people on software projects are any more prone to dishonesty than
the culture at large. I do know that deception in varying degrees is common on software
projects. It’s a dirty little secret we don’t much explore, although it’s an open secret in the
business. I’m glad to see that other people are writing about it.

One of my articles on tester and consultant ethics4 prompted a reader to protest that
people can take grave risks telling the truth on software projects, and in a tough
economy truth may be a luxury some can’t afford. I believe that an expedient lie is the
luxury we can’t afford. Not for our professional reputations, not for our projects, not for
our self respect. I think most testers would agree.

Lying hurts software projects. How many projects have you been on where “everyone
knew” the schedule was fiction? Everyone except management, that is, the managers
having conveniently forgotten they’d set the project up for failure at the beginning. And
perhaps those managers had confidently told senior executives the fake schedule was
all certain and wonderful—and now they’re running out of budget and running scared. So
they put pressure on their teams.

Apart from the cynicism engendered by living a lie, software people do shoddy work
under pressure. Designing, coding and testing are all difficult work that requires a clear
head. In my experience, the projects where people lie the most produce the worst
software.

Lying hurts people too. Every time I present at a conference on “When a Tester is Asked
to Lie”,5 one or two people take me aside and say, “This is so timely. It’s happening for
me right now and I don’t know what to do.” Others tell me it has already happened to
them, and it’s a nightmare they don’t ever want to repeat. A test manager told me he’d
been fired because “we don’t think you’re comfortable lying to the customer.” (“Too right
I’m not!”, he said to me.)

 Page 3 of 4

© Fiona Charles 2011 Six Impossible Things Before Breakfast

 Page 4 of 4

Yes, it can be risky to tell the truth when others are lying. It can also be unexpectedly
rewarding. I have more than once seen an unhappy project benefit from the act of a
single tester or programmer bravely stepping forward and saying, “I’m way behind. I’m
not going to make the schedule, and I’d like to explain why.” Sometimes that can be all
that’s needed to enable others to speak openly. Though the ensuing discussion might be
painful, it could lead to a realistic replanning exercise that puts a project on an
achievable path to recovery.

So why don’t we just stop lying? We don’t have to practice believing ANY impossible
things before breakfast. We don’t have to convince other people to believe them.

I’ve loved reading Alice most of my life, but I’ve never taken the White Queen to be a
role model. Have you?

What lies have you heard on software projects? Add to my list

I’ve written mostly in this article about schedule and status lies, but my list of thirty-plus
includes many other types.

I’ve put it on my blog at http://quality-intelligence.blogspot.com/ so you can see the
whole list and add your comments. Can you add to the list? Do you have experiences of
project lies (or truth-tellings) you’d like to share?

Notes

1 Lewis Carroll, Through the Looking-Glass (Kindle edition), Chapter V.

2 Johann Rost and Robert L. Glass, The Dark Side of Software Engineering: Evil on Computing
Projects (IEEE Computer Society, John Wiley and Sons, 2011).

3 Robert C. Martin, The Clean Coder: A Code of Conduct for Professional Programmers (Prentice
Hall, 2011).

4 I’ve published 4 other articles dealing with the subject of ethics, all on Stickyminds.com. Copies
are also on the Publications page of my website, www.quality-intelligence.com. Search for the
titles:

Sophie’s Choice (September 1, 2007)
Deception and Self-Deception in Software Testing (June 1, 2009)
Negative Positive (February 8, 2010)
No Compromise (June 21, 2010)

5 Besides the conference presentation “What Price the Truth: When a Tester is Asked to Lie”,
which deals with a specific type of project lying, I also lead an experiential workshop on the
broader topic of “Deception and Self-Deception in Software Testing”.

http://quality-intelligence.blogspot.com/
http://www.quality-intelligence.com/

	Six Impossible Things Before Breakfast

