
Planning the Endgame
Fiona Charles
© Fiona Charles 2007

Originally published on stickyminds.com August 28, 2007.

We know that the elapsed time for testing will ultimately be decided not only by the
number of hours we schedule for our team but also by the quality of the system we get
to test, the development team’s turnaround time for bug fixes, and the stakeholders’
appetite for risk.

This is the endgame: the interplay of tests, builds, bug fixes, and retests plus regression
tests. Unfortunately, project managers, even experienced ones, can fall into the trap of
planning only for testing—forgetting to take the whole endgame into account.

A test manager can help the project manager build a credible case for the amount of
testing time you need by modeling a plan for the endgame.

 I start by coming up with a number representing test cases. That gives me the most
important unit of measure, and a starting point for other planning assumptions.

In my planning, a “test case” is just a handy unit of measure, representing one significant
thing we’re going to do to test some aspect of the system.. The definition and size vary
according to the system we’re testing. Although the actual sizes of test cases for any
system will vary widely, it’s usually possible to come up with an average unit that will
hold up well enough for planning purposes.

During test design, I work with my team to define what we mean by “test case,” usually
by analogy.

“A test case is a thing like this, about this big.”

“We think it will take about this long to develop an average test case.”

When we have several developed, we can say,

“We think it will take about this long, on average, to execute an average test
case, including setting up the data, taking notes, and entering bugs.”

Test cases don’t have to be documented. I can use the same unit to allow for a mix of
predesigned and exploratory tests in the plan. Having a consistent unit means I can
apply some planning assumptions to undocumented tests. I add contingency to the
number, and for test execution I also raise it by some percentage for exploratory testing.

For test execution, I first try to estimate the number of test cases we can attempt in a
week. Several assumptions go into that, including average time to execute a test case,
productive tester hours per day, and the number of testers. I also add some factor for
environment down time, plus or including builds, depending on the disruption time
expected from routine builds.

 Page 1 of 4

© Fiona Charles 2008 Planning the Endgame

The calculations look like this:

Work days in a week 5
(times) Productive hours in a day, per tester 6
(times) Number of testers 5

(minus) Environment downtime 10%

Average hours/week available for testing 135

(times) Average test cases executed/hour 3

Average test cases executed/week 405

Let’s say we have 1,200 test cases. If we plan only for actual test time, it could appear
as if we would complete testing in about three weeks.

In reality, the test team won’t reach full productivity in the first couple of weeks. If we
estimate a productivity hit of 25 percent in weeks one and two, we will actually only
execute about 300 test cases in the first two weeks.

Regardless, we will be finding bugs, so next I estimate how many bugs we expect to
find. Let’s say I expect an average of one bug logged for every three test cases
executed. A test case that finds a bug won’t pass and will have to be re-executed at
least once more.

Week one starts to look like this:

WEEK 1

Test
Cases to

Pass
 1200

Average hours/week available for testing 135
(minus) First week startup 25%
Test cases executed 304
Bugs found 101

 998

Of the bugs we find, some number – say one in three -- will be severity one or two, and
therefore critical to fix and retest. I also assume that around a third of the lower-severity
bugs will be fixed. I ask the development leads for average times to fix bugs. If they can’t
supply an estimate (which is often the case), I’ll propose one, say seven bugs per
developer per week. . The development plan should tell me how many developers will be
available to fix bugs, say five developers.

 Page 2 of 4

© Fiona Charles 2008 Planning the Endgame

Now Week One looks like this.

WEEK 1

Test
Cases to

Pass
Bugs to

Fix

TEST CASES 1200
Average hours/week available for
testing 135
(minus) First week startup 25%
Test cases executed 304
 998
BUGS
Bugs found 101
% of bugs that are severity 1 or 2 33% 33
% of low severity bugs to fix 33% 22
Bugs to fix 55
Bug fixes/developer/week 7
(times) Developers fixing bugs 5

Bugs fixed 35 20

We go into week two with almost 1,000 test cases still to execute and pass and twenty
open bugs.

If developers aren’t added to fix bugs, the number of open bugs continues to rise. Week
two ends with forty open bugs; week three (when we are executing more test cases and
finding more bugs) ends with seventy-nine. And so on.

By the end of week four, we will have run through all the test cases once and will be
finding fewer new bugs than during the first couple of weeks, at which point the
emphasis shifts almost entirely to bug fixing and retesting. When that is complete, so is
the endgame.

That’s the simple model, which provides a rough idea of the end date. You can refine the
model by adding more variables reflecting expected reality.

For example, some of the bugs fixed, say one in ten, will fail retest and go back into fix.
When planning, I include a few other assumptions, such as a number of reported non-
problems that take everybody’s time, and a number of environment problems, especially
in the first couple of weeks.

Like all models, this one has limitations. For one, the calculations tend to be linear while
projects aren’t. But on several projects I have found that my models weren’t far from
reality. I once used the model in a phone conversation to convince a project manager
and the client’s CIO (whom I’d never met) that we needed three more months to test
than they had planned for. Impressed by the detail in the model, they bought my plan. In
the end the model was short by three weeks, but I didn’t think I’d done too badly on a
four-month plan—given that the development team decided to do an infrastructure
upgrade in the last month that delayed everything.

When we use a planning model like this, based on assumptions built from estimates,

 Page 3 of 4

© Fiona Charles 2008 Planning the Endgame

 Page 4 of 4

it’s important for everyone to understand that it is a heuristic device. Estimating
endgame activities, including testing, is about as accurate as estimating development or
any other project work. The more we know, the closer we can get to something that
might work out in reality. But our numbers will always be estimates rather than exact
predictions.

Merriam Webster’s Online Dictionary has this definition for “heuristic”:

“Of or relating to exploratory problem-solving techniques that utilize self-
educating techniques (as the evaluation of feedback) to improve performance”

This definition is a useful reminder that once we have modeled a plan, it’s essential to
track actuals so we can continually check every assumption as we go through the
endgame and adjust the plan accordingly.

Modeling the endgame helps test managers and project managers estimate an end date
that the project has a reasonable chance of achieving. That’s the date when we should
have passed all the test cases and fixed and retested all the bugs that must be fixed.
Most importantly, because the model provides an explicit set of assumptions, it’s hard for
project managers and others to argue that we need less time to test, and it’s easier for
us to argue for more time if the assumptions turn out to be wrong.

