
© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

Abstract
Many test efforts depend on scenarios that represent real sequences of transactions and
events. Scenarios are important tools for finding problems that matter to stakeholders in
business applications and integrated solutions, giving us tests of functionality from end
to end. Often, scenarios are essential for business acceptance, because they
encapsulate test ideas in a format that is meaningful for business users and easy for
them to understand and review.

User stories, use cases, and other business requirements can be good sources of
scenario test ideas. But testers know that these are rarely comprehensive or detailed
enough to encompass a thorough test without additional analysis. And if we base our
test model entirely on the same sources used by the programmers, our test will reflect
the assumptions they made building the system. There is a risk that we will miss bugs
that arise from misinterpreted or incomplete requirements or user stories.

One way to mitigate this risk is to build a scenario model whose foundation is a
conceptual framework based on the data flows. We can then build scenarios by doing
structured analysis of the data. This method helps to ensure adequate coverage and
testing rigor, and it provides a cross-check for our other test ideas. Because it employs a
structure, it also facilitates building scenarios up from reusable components.

Definitions

Scenario
One dictionary defines “scenario” as:

An outline or model of an expected or supposed sequence of events.1

In his Introduction to Scenario Testing, Cem Kaner extends his definition to testing:

A scenario is a hypothetical story, used to help a person think through a complex
problem or system…A scenario test is a test based on a scenario.2

Test Model
Every software test is based on a model of some kind, primarily because we can never
test everything. We always make choices about what to include in a test and what to
leave out. Like a model of anything—an airplane, a housing development—a test model
is a simplified reduction of the system or solution we are testing.

The test model we employ embodies our strategic choices, and then serves as a
conceptual construct within which we make tactical choices. This is true whether or not

1 The American Heritage® Dictionary of the English Language: Fourth Edition, 2000.

2 Cem Kaner, An Introduction to Scenario Testing, 2003.
http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf

 Page 1 of 16

http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

we are aware that we are employing models. Every test approach is a model—even if
we take the “don’t think about test design, just bang out test cases to match the use
cases” approach. But if we’re not consciously modeling, we’re probably not doing it very
well.

Here’s Jerry Weinberg’s general definition of ”model”:

Every model is ultimately the expression of one thing…we hope to understand in
terms of another that we do understand.3

In these definitions of “scenario” and “model”, we see the inextricable connection
between scenarios and models. For our purposes, then:

A test model is any reduction, mapping, or symbolic representation of a system,
or integrated group of systems, for the purpose of defining or structuring a test
approach.

A scenario is one kind of model.

We don’t have to use scenarios to model a software test, but we do have to model in
order to use scenarios.

Designing a Model for a Scenario Test
It is useful to model at two levels when we are testing with scenarios:

 The overall execution model for testing the solution.

 The scenarios that encapsulate the tests.

There are many different ways to model both levels. The retail Point of Sale (POS)
system example in this paper uses a hybrid model based on business operations
combined with system data as the basis for the overall test execution model, and
system data for the scenario model.

• Business operations, e.g.
o “Day (week, month, mock-year) in the life”
o Model office or business

A business operations model is the easiest to communicate to all the
stakeholders, who will immediately understand what we are trying to achieve and
why. Handily, it is also the most obvious to construct. But it is not always the
most rigorous, and we may miss testing something important if we do not also
look at other kinds or levels of models.

• System Data, categorized within each flow by how it is used in the solution and

by how frequently we intend to change it during testing:

3 Gerald M. Weinberg, An Introduction to General Systems Thinking, p.28

 Page 2 of 16

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

o Static
o Semi-static
o Dynamic

Combining different model bases in one test helps testers avoid the kinds of
unconscious constraints or biases that can arise when we look at a system in only one
way. We could also have based our models on such foundations as:

• The entity lifecycle of entities important to the system, e.g.:
o product lifecycle (or account, in a banking system)
o customer experience

• Personae4 defined by testers for various people who have some interaction with

the system, or who depend on it for data to make business decisions. These
could include people such as:

o merchandising clerk
o store manager
o sales associate
o customer
o category manager

• High-level functional decomposition of the system or organization, to ensure

that we have included all major areas, including those that may not have
changed but could be impacted by changes elsewhere:

o Functional areas within the system or business (Ordering, Inventory
Management, Billing, etc.)

o Processes in each area (Order capture, provisioning, etc.)
o Functions within each process (Enter, edit, cancel order, etc.)

• Already defined user stories or use cases

• Stories created by testers, using their imaginations and business domain

knowledge, including stories based on particular metaphors, such as:

o soap opera tests5

Although none of these was central in our test model, we used each to some degree
in our modeling (except for pre-defined user stories and use cases, which didn’t exist
for this system). Using a range of modeling techniques stimulated our thinking and
helped us avoid becoming blinkered by our test model.

Modeling Based on Data
We constructed our primary central model using a conceptual framework based on the
system data. This is a good fit for modeling the scenario test of a transactional system.

4 See books by Alan Cooper for an explanation of persona design.
5 Hans Buwalda, Soap Opera Testing; Better Software, February 2004.

 Page 3 of 16

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

A data-driven model focuses on the data and data interfaces:

• Inputs, outputs and reference data
• Points of entry to the system or integrated solution
• Frequency of changes to data
• Who or what initiates or changes data (actors)
• Data variations (including actors)

A model based on data represents a systems view that can then be rounded out using
models based on business views. As well as providing a base for scenarios, focusing on
the data helps us identify the principal components we will need for the overall execution
model for the test:

• Setup data
• Entry points
• Verification points
• Events to schedule

It’s also easy to structure and analyze.

Conceptual Framework for a Data-driven Model
Here’s a conceptual framework..

Transaction
Test Bed Data Context

Ev
en

t

Dynamic
Data

Transaction

Actor(s)

External
source

Reference
Data

(Static)

M
July 08

T W T F S S
1 2 3 4 5 6

7 8 9 1
0

1
1

1
2

1
31

4
1
5

1
6

1
7

1
8

1
9

2
02

1
2
2

2
3

2
4

2
5

2
6

2
72

8
2
9

3
0

3
1

Actor(s)

Actor(s)

system
entry
point

system
entry
point

verification
Point

system
entry
point

Date & Time Context

Event

Semi-static
Data

Ev
en

t

System

System

System

 Page 4 of 16

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

At the most basic level, we want scenarios to test the outcome of system transactions.

Transactions drive dynamic data, i.e., data that we expect to change in the course of
system operation. Transactions represent the principal business functions the system is
designed to support. Some examples for a POS system are sales, returns, frequent
shopper point redemptions, customer service adjustments.

A transaction is initiated by an actor, which could be human or the system.

There may be more than one actor involved in a transaction, e.g., a sales associate and
a customer:

Many scenarios will have multiple transactions.

 Page 5 of 16

Subsequent transactions can affect the outcome by acting on the dynamic data created
by earlier related
transactions.

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

Transactions operate in a context partly determined by test bed data.

Reference test bed data is static (doesn’t change in the course of the test), e.g., user
privilege profiles, frequent shopper (loyalty) points awarded per dollar spent, sales tax
rates. Deciding which data should be static is a test strategy decision.

Transaction
Test Bed Data Context

Dynamic
Data

Transaction

Actor(s)

Reference
Data

(Static)

Actor(s)
system
entry
point

system
entry
point

verification
Point

System

System

The test bed also contains semi-static data, which can change the context and affect
the outcomes of transactions.

Semi-static data changes occasionally during testing, as the result of an event.
Examples of semi-static data include: items currently for sale, prices, and promotions.

Determining which data will be semi-static, and how frequently it will change, is also a
test strategy decision.

 Page 6 of 16

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

Events affect transaction outcomes—by changing the system or test bed data context,
or by acting on the dynamic data.

Events can represent:

• periodic or occasional business processes, e.g., rate changes, price changes,
weekly promotions (deals), month-end aggregations

• system happenings, such as system interface failures

• “external” business exceptions, such as a shipment arriving damaged, or a
truck getting lost

 Page 7 of 16

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

Scenarios also operate within a context of date and time.

The date/time a transaction or event occurs can have a significant impact on a scenario
outcome.

Ev
en

t

Transaction

Event
Ev

en
t

Categorizing the data determines each type’s role in the test, and gives us a conceptual
framework for the scenario model:

• Reference data sets the context for scenarios and their component transactions.

• A scenario begins with an event or a transaction.

• Transactions have expected results.

• Events operate on transactions and affect their results
o A prior event changes a transaction context, e.g., an overnight price

change.

 Page 8 of 16

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

o A following event changes the scenario result and potentially affects a
transaction, e.g., product not found in the warehouse.

• Actors influence expected results, e.g., through:
o User privileges
o Customer discount or tax status

We can apply this framework to the design of both levels of test model: the overall
execution model (the central idea or metaphor for the test approach), and the scenario
model.

Test Design for a Point of Sale (POS) System
The example that follows shows how, together with a small test team, I applied the
conceptual framework described above to testing a POS system on a client project. A
core member of my team was David Wright, a senior tester with whom I have worked on
many systems integration test projects, and who has contributed many ideas and
practical details to development of this method. As well as experience with end-to-end
scenario testing, David and I both have extensive retail system domain knowledge,
which was essential to successful testing on this project.

Background
The client operates a chain of more than 1000 retail drugstores across Canada. This
project was for their secondary line of business, a home health care company (HHC),
which sells and rents health care aids and equipment to retail customers through 51
stores in different regions of Canada. The POS system was being implemented
standalone for the HHC. Following successful implementation for HHC, the plan was to
implement POS in the main drugstores, fully integrated with an extensive suite of store
and corporate systems.

The POS system is a standard product, in production with several major retailers
internationally, but it was being heavily customized by the vendor for this client. The
client had contracted with an integrator to manage the implementation and mitigate its
risks. I reported to the integrator with my test team.

The vendor was contractually obligated to do system testing. The integrator had a strictly
limited testing budget, and there were several other constraints on my test team’s ability
to develop sufficient detailed knowledge of POS to perform an in-depth system test
within the project’s timelines. I therefore decided that our strategy should be to perform
an end-to-end acceptance test, focusing on financial integrity (i.e., consistency and
accuracy end-to-end). Because we expected the client would eventually proceed with
the follow-on major integration project in the drugstores, I built the test strategy and the
artifact structure to apply to both projects, although an estimated 40% of the detailed
scenario design would need to be redone for the primary line of business.

 Page 9 of 16

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

Overall Execution Model
Having analyzed and categorized the data for the POS system, I designed this overall
model for executing the test.

The POS system had four principal modules (Item and Price Management, Promotions
Management, Store Operations, and Central Reporting), operating in three location
types as shown in the diagram. The POS client would operate in each store and Store
Back Office. The Central Office modules would be the same for all stores and all would
offer the same items, but actual prices and promotions would differ by region and be fed
overnight to each store. We decided to run 2 test stores, covering 2 regions with different
pricing and provincial tax structures. One of our test stores could be switched to a
different region if we identified problems requiring more in-depth testing of location
differences.

We combined a business operations view with our data-driven overall model. This gave
us a test cycle model that looked like this.

 Page 10 of 16

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

User setup (from Store for Pilot)
Store parameters

Item load (from spreadsheet)

Scenario Design
We decided to build our scenarios up from an element we defined as an item
transaction. The team began by drilling down on each framework element and defining it
from a test point of view: i.e., important attributes for testing, and the possible variations
for each. Item transactions had some other elements listed (actors, items) with them,
giving us a list that looked like this:

Transaction

• Type (sale, return, post-void, rental, rental-purchase…)
• Timeframe (sale/rental + 3 days…)
• Completion status (completed, void, suspended)
• Store
• Register
• User (cashier, manager, supervisor, store super-user)
• Customer (walk-in, preferred, loyalty, status native, employee…)
• Item(s) [multiple attributes, each with its own variations]
• Tender (cash, check, credit card, debit, coupon, loyalty redemption…)

1-time setup
b re all cycles

CENTRAL OFFICE

efo

Item maintenance
Price maintenance

romotions

ENTRAL
OFFICE

O ce per cycle
events

P

C

n

Close store

Verify:
Totaller

Cash Balance
Daily Reports

TLOG

STORE1 BACK
OFFICE

STORE1 BACK
OFFICE

Open store

Close store

Verify:
Totaller

Cash Balance
Daily Reports

TLOG

STORE2 BACK
OFFICE

STORE2 POS
REGISTERS

Open register
Login

POS transactions
.
.
.

Logout
Close register

(Verify POS receipts
Till balance)

STORE2 BACK
OFFICE

Open store

Daily, 3-4 days per cycle

STORE1 POS
REGISTERS

Open register
Login

POS transactions
.
.
.

Logout
Close register

(Verify POS receipts
Till balance)

STORES

CENTRAL
OFFICE

Verify:
Central reports

Sales report

Once per cycle
event

Run reports

 Page 11 of 16

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

• Loyalty points (y/n)
• Delivery/pickup (cash and carry, home delivery…)
• Promotions in effect (weekly flyer, store clearance…)
• Other discount (damage…)

Using spreadsheets to structure our analysis, we designed a full range of item
transactions, working through the variations and combining them to make core test
cases. Wherever possible, we built in shortcuts, e.g., Excel lists for variations of most
attributes.

Here’s a simplified example of the transaction definitions.

Txn-ID Store Type Timeframe Completion Register User Profile Customer Item(s) Tender Points
Delivery
/Pickup Promos Discounts

POS-1 1 sale n/a C 4 cashier walk-in 45270 cash-CAD n C&C n/a n/a
POS-2 1 return sale+1 C 2 manager walk-in 45270 cash-CAD n/a n/a n/a

POS-3 2 sale n/a c 1 cashier employee

98651
54945
21498 Visa y HD sidewalk raincheck

We designed events in a similar fashion, including price changes and promotions. We
also constructed an item table with all their attributes and variations.

We then designed scenarios, using the item transactions we’d defined as the lowest-
level building blocks. This allowed us to combine item transactions and also to use them
at different points in scenarios.

Here’s the scenario model:

Item Transaction

Customer POS Transaction
Customer POS Transaction

Customer POS Transaction

Customer POS Transaction
Customer POS Transaction

Store POS Day

Customer POS Transaction
Customer POS Transaction

Test Cycle

Item Transaction

Customer POS Transaction
Customer POS Transaction

Customer POS Transaction

Customer POS Transaction
Customer POS Transaction

Store POS Day

1 Test Cycle = (n Store POS Days * 2 stores)

1 Store POS Day = n Customer POS Transactions

1 Customer POS Transaction = n Item Transactions

1 Item Transaction = the lowest level POS test case

Store Day Totals

Itemized POS receipts

Items

Item table in spreadsheets: prices, promotions, etc.

STORE 2STORE 1

Central Office Totals

The scenario spreadsheets referenced the item transaction and item sheets, so we
could make changes easily. Our spreadsheet structures also allowed us to calculate

 Page 12 of 16

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

expected results for each test day and test cycle. This was essential for a system with so
many date dependencies, where we had to evaluate the cumulative results of each store
sales day daily, and at the end of each cycle evaluate the corporate week for all stores.

Here’s a simplified version of the scenario design

Central Office Store Back Office Store

POS-S-S1

Senior phones in to buy 3
items on Super Senior's Day
of which 1 is a charge sale
item and 1 is a govt funded
item, delivery and service
charges applied, pre-paid
delivery n/a

PROMO-45
PROMO-7 Open Store

Open Register
Login POS-S133

Logout
Close Register
Close Store
RPT-16

POS-S-S19

Loyalty customer pays for 5
items, of which 4 are points-
eligible; customer changes
mind before leaving register
and 1 points-eligible and 1
non-eligible are post-voided n/a n/a Open Store

Open Register
Login POS-S17 POS-PV17

POS-S-S65

Senior phones in to buy 3
items on Super Senior's Day
of which 1 is a charge sale
item and 1 is a govt funded
item, delivery and service
charges applied, pre-paid
delivery n/a

PROMO-12
PROMO-7
ITEM-96 Open Store

Open Register
Login POS-S133 n/a `

Post-Txn
EventsMain Txn

Follow-on
Txns

Scenario
ID Description Prior txns

Prior events

In addition, we wrote Excel macros to automate the creation of some test artifacts from
others. The testers’ worksheets for test execution, for example, were automatically
generated. (Unfortunately, the worksheets are too large to show an example legibly in
this format.)

Results of the POS Test
The vendor POS system, and in particular the customizations, turned out to be very poor
quality. As a result, a test that had been planned to fit our budget, with 4 cycles
(including a regression test) over 4 weeks, actually ran through 28 cycles over 14
weeks—and then continued after pilot implementation. My strategy, and our test
scenarios, proved effective. We logged 478 bugs, all but 20 of which our client
considered important enough to insisted on having fixed:

Severity Count %
1 8 2%
2 331 68%
3 116 25%
4 23 5%

Total 478

It’s important to ask whether this was the most cost-effective way to find those bugs.
Probably it was not, since many of them should have been found and fixed by the
vendor before we got the system. But many other bugs would probably not have been
found by any other kind of test. And—given the total picture of the project—it was critical

 Page 13 of 16

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

that the integrator conduct an independent integrated test. This was the most efficient
way for our team to do that with the constraints we had.

There were several business benefits from our test and test strategy. The most
important was buy-in from the client’s Finance department. Because our test verified
financial integrity across the system, it provided Finance with evidence of a solid solution
from their point of view.

Our scenario test facilitated acceptance for implementation in the home health care
stores, and provided information for the decision on whether or not to proceed with
integration and implementation in the 1000+ drugstores.

Because we tested the end-to-end function of complex data interactions that are
business norms for this client, such as sales, returns and rentals of items with date-
dependent prices and promotions, and returns when prices have changed and new
promotions are in effect, we were able to provide the business with an end-to-end view
of system function that crossed modules and business departments. Our varied
scenarios provided sufficiently realistic data to verify critical business reports.

Finally, the spreadsheet artifacts we used throughout the test and gave to the client
supplied solid evidence of testing performed, in the event it should ever be required for
audits.

Conclusion

Testing Benefits on the POS Project
The principal benefit of my strategy from a testing point of view was that my team
supplemented the vendor’s testing rather than attempting to duplicate it. The vendor’s
testing did not include an integrated view of POS function. Ours did, and that allowed us
to focus primarily on system outcomes, and only secondarily on the users’ immediate
experiences.

By adopting a building-block approach, we incorporated efficiency in test preparation
and execution. This gave us flexibility to reschedule our testing according to the state of
the system on any given day. When we encountered bugs, we could work with the
vendor and drill down to the components of a scenario (item setup, item transaction,
promotion setup, etc.) to find the problem.

Our robust and structured transaction-scenario artifacts provided the client with a
reusable regression test for future releases, upgrades to infrastructure, etc.

We were able to layer operability tests on top of our scenario testing, simulating real
conditions and verifying the outcomes.

When to Consider Scenario Testing
Scenario testing as I have described it here is not always the best test method. It does
not fit well with exploratory testing, and it is not the most effective way to test deep

 Page 14 of 16

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

function. It is, however, a very useful method for testing widely across a system. It is
better for testing system outcomes than for evaluating a user’s immediate experience.

Scenario testing should, therefore, be considered as part of an overall test strategy that
includes different kinds of tests. Some situations where it could be appropriate include:

• Acceptance tests of business systems, e.g., UAT or vendor acceptance.

• End-to-end systems integration tests of multi-system solutions, or of enterprise
integrated systems.

• Situations where a test team lacks sufficient detailed system knowledge to do
under-the-covers or deep function testing and has no way to get it, and
insufficient time to explore. When there is a combination of inadequate
documentation, restricted or zero access to people who wrote the software, and
critical time pressures, scenario testing might be the best solution to the testing
problem. (All of these constraints applied on the POS project, and we overcame
them with scenario tests informed by business domain knowledge.)

Critical Success Factors
The single most important requirement for designing good scenario tests is business
domain knowledge, in the form of one or both of:

• Testers with experience in the domain

• Input from, and reviews of scenarios by, business representatives

Where neither of these is available, it is at least possible to resort to industry books, as
Cem Kaner’s suggests6.

To use the approach described in this paper, you need:

• A model with a framework that fits the type of application. A data-driven model
works well for transactional systems. For other types of applications, e.g., a
desktop publishing system, you would need to create a different model and
framework, such as one based on usage patterns.

• Testers skilled in structured analysis. This is not the no-brainer it sounds. Not all
testers—not even all good testers—have this skill.

• A building-block approach, so you can design and build varied and complex tests
from simple elements. Among other advantages, this allows you to begin testing
with the simplest conditions before adding complexity to your scenarios. It also
makes it possible to automate some of the test artifacts, and build in calculated
expected results. This becomes essential in large-scale systems integration
tests, where you have to communicate accurate expected results to multiple
teams downstream in the integration.

6 Cem Kaner, An Introduction to Scenario Testing, 2003.
http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf

 Page 15 of 16

http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf

© Fiona Charles 2009 Modeling Scenarios using Data Final
 1-July-2009

 Page 16 of 16

Risks
If you adopt scenario testing, these are the critical things to watch out for.

• Scenario testing can miss important bugs you could find with under-the-covers or
deep function testing. Remember that scenario testing is better for testing end-to-
end than it is for testing deeply, and build your strategy accordingly.

• Bugs found in scenario outcomes can be difficult to diagnose. Especially if

system quality is suspect, it is essential to begin with simple scenarios that test
basic end-to-end function, only proceeding to complex scenarios when you have
established that fundamental quality is present.

• In choosing a model, there is always a risk of fixing on one that is too restrictive.

Applying two or more model types will help prevent this.

• Equally, there is a risk of choosing a model that is too expansive (and
expensive).

Finally, never fall in love with one model type. This applies to your models for a single
test as much as it applies to your model choices for different tests. Every test is different,
and every model type can bring benefits that others lack.

.

	Abstract
	Definitions
	Scenario
	Test Model

	Designing a Model for a Scenario Test
	Modeling Based on Data
	Conceptual Framework for a Data-driven Model

	Test Design for a Point of Sale (POS) System
	Background
	Overall Execution Model
	Scenario Design
	Results of the POS Test

	Conclusion
	Testing Benefits on the POS Project
	When to Consider Scenario Testing
	Critical Success Factors
	Risks

